Math, asked by ananyaaa7487, 1 year ago

Prove that cos 4x = 1 – 8sin^2 x cos^2 x

Answers

Answered by Pitymys
5

Use the identities,

 \cos 2\theta=1-2\sin^2 \theta\\<br />\sin 2\theta=2\sin \theta \cos \theta

Now,

 LHS=\cos 4x=1-2\sin ^2 2x\\<br />LHS=\cos 4x=1-2(2\sin  x\cos  x)^2\\<br />LHS=\cos 4x=1-8\sin^2  x\cos^2  x=RHS

Answered by utcrush18
6

Answer:

you can solve  

cos4x as

cos2(2x) =1-2sin2(2x)

            =1-2(2sinx . cosx)2                          { sin2x = 2sinx. cosx}

            =1-2(4sin2x.cos2x)

           =1-8sin2x.cos2x

LHS=RHS

Similar questions