prove that (1+sec2 theta)(1+sec4 theta)...... (1+sec2^n theta) = tan2^n theta. cot theta
Answers
we have to prove that,
(1 + sec 2θ)(1 + sec 4θ).............(1 + sec 2ⁿθ) = tan 2ⁿθ.cotθ
or, tanθ(1 + sec 2θ)(1 + sec 4θ).............(1 + sec 2ⁿθ) = tan 2ⁿθ
now, f(θ) = tanθ.(1 + sec2θ)
= (sinθ/cosθ)(1 + cos2θ)/cos2θ
= (sinθ/cosθ) (2cos²θ)/cos2θ
= (2sinθ.cosθ)/cos2θ
= sin2θ/cos2θ
= tan2¹θ
similarly, f(2θ) = tan2θ.(1 + sec4θ)
= (sin2θ/cos2θ) (1 + cos4θ)/cos4θ
= (sin2θ/cos2θ)(2cos²2θ)/cos4θ
= (2sin2θ.cos2θ)/cos4θ
= tan4θ = tan2²θ
f(3θ) = tan4θ(1 + sec8θ) = tan8θ = tan2³θ
f(4θ) = tan8θ(1 + sec16θ) = tan16θ = tan2⁴θ
....... ..... ........
f(nθ) =tan2ⁿ-¹θ(1 + sec2ⁿθ) = tan2ⁿθ
⇒ f(nθ) = tanθ(1 + sec 2θ)(1 + sec 4θ).............(1 + sec 2ⁿθ) = tan 2ⁿθ
hence, it is clear that, tanθ(1 + sec 2θ)(1 + sec 4θ).............(1 + sec 2ⁿθ) = tan 2ⁿθ
or, (1 + sec 2θ)(1 + sec 4θ).............(1 + sec 2ⁿθ) = tan 2ⁿθ.cotθ