Prove that
1
SecA-TanA.
Answers
Answered by
0
Answer:
Given,
secA−tanA
1
−
cosA
1
=
cosA
1
−
secA+tanA
1
or
secA−tanA
1
+
secA+tanA
1
=
cosA
1
+
cosA
1
Here, R.H.S.=
cosA
2
Now,
L.H.S.=
secA−tanA
1
+
secA+tanA
1
=
(secA−tanA)(secA+tanA)
secA+tanA+secA−tanA
=
cosA
2
Thus, L.H.S.=R.H.S.
Similar questions