Math, asked by Shane1111, 1 year ago

Prove that 1/secA-tanA=secA+tanA

Answers

Answered by siddhartharao77
131
Given LHS =  \frac{1}{secA-tanA}

On rationalizing we get,

 \frac{1}{secA-tanA} *  \frac{secA+tanA}{secA+tanA}

 \frac{secA+tanA}{(secA-tanA)(secA+tanA)}

 \frac{secA+tanA}{sec^2A-tan^2A}

 \frac{secA+tanA}{1}

secA+tanA.


LHS = RHS.


Hope this helps!
Answered by sdikisona
24

Answer:

LHS=1/secA+tanA

1/secA+tanA*secA-tanA/secA-tanA

secA-tanA/sec^2A-tan^2A

secA-tanA/1

SecA-tanA

LHS=RHS

Step-by-step explanation:

Similar questions