Prove that 1+sectheta - tan theta / 1+ sectheta + tan theta = 1-sintheta / cos theta
Answers
Answered by
1
Answer:
We have to find the value of the expression:
\dfrac{1+\sec \theta -\tan \theta}{1+\sec \theta+\tan \theta}
We will rationalize our denominator:
\dfrac{(1+\sec \theta-\tan \theta)(a+\sec \theta+\tan \theta)}{(1+\sec \theta-\tan \theta)(1+\sec \theta+\tan \theta)}\\\\\\=\dfrac{(1+\sec \theta-\tan \theta)^2}{(1+\sec \theta)^2-\tan^2 \theta}\\\\\\=\dfrac{(1+\sec \theta)^2+\tan^2 \theta-2(1+\sec \theta)\tan \theta}{1+\sec^2 \theta+2\sec \theta-\tan^2 \theta}\\\\\\=\dfrac{1+\sec^2 \theta+2\sec \theta+\tan^2 \theta-2\tan \theta-2\sec \theta\tan \theta}{2+2\sec \theta}
since,
\sec^2 \theta-\tan^2 \theta=1
=\dfrac{2\sec^2 \theta+2\sec \theta-2\sec \theta\tan \theta-2\tan \theta}{2(1+\sec \theta)}\\\\\\\\=\dfrac{2\sec \theta(\sec \theta+1)-2\tan \theta(\sec \theta+1)}{2(\sec \theta+1)}\\\\\\=\dfrac{2(\sec \theta-\tan \theta)(\sec \theta+1)}{2(\sec \theta+1)}\\\\=\sec \theta-\tan \theta\\\\=\dfrac{1}{\cos \theta}-\dfrac{\sin \theta}{\cos \theta}\\\\=\dfrac{1-\sin \theta}{\cos \theta}
Hence, the value of the expression is:
\dfrac{1+\sec \theta -\tan \theta}{1+\sec \theta+\tan \theta}=\dfrac{1-\sin \theta}{\cos \theta}
Answered by
0
Answer:
===>L.H.S ==> (1+ SEC Q - TAN Q) / 1 + SEC Q + TAN Q
===> WE KNOW THAT 1 = SEC²Q-TAN²Q
====> [ (SEC²Q-TAN²Q) + SEC Q - TAN Q ] / 1 + SEC Q + TAN Q
===> [ (SEC Q + TAN Q) (SEC Q - TAN Q) + SEC Q - TAN Q ] / 1+SECQ + TANQ
NOW , SEC Q - TAN Q IS COMMON
SO, SEC Q - TAN Q [ (SEC Q + TAN Q) + 1] / (1 + SECQ + TAN Q)
==> SEC Q - TAN Q [SEC Q + TAN Q + 1] / (SECQ+TANQ + 1]
==> SEC Q - TAN Q
===> 1/COSQ - SINQ/COSQ
==> (1-SINQ)/ COSQ
Similar questions