Prove that , 1 + sin 2a - cos 2a / sin a + cos a = 2 sina
Answers
Answer:
Given,
Cos2A÷1-sin2A ------------ I
To prove,
Cos2A÷1-sin2A=cosA+sinA÷cosA-sinA
We can use 2 formulas,
cos(2A) = cos^{2}A - sin^{2}A
and,
sin(2A) = 2 sin(A)cos(A)
We, also substitute 1 = cos^{2}A + sin^{2}A
NOW try to solve the question on you own, with the following substitutions.
Make sure you have tried before actually seeing the solution.
Now, our I, becomes,
[cos^{2}(A) - sin^{2}(A)] / [sin^{2}A + cos^{2}(A) - 2 sin(A)cos(A)]
Now, denominator can be brought to the square form, and numerator simplified as,
[cos(A) + sin(A)] * [cos(A) - sin(A)] / [cos(A) - sin(A)]^{2}
Now, we get
cosA+sinA / cosA-sinA
Hence ,
Cos2A÷1-sin2A=cosA+sinA÷cosA-sinA
Hence, proved.
OR
LHS
=(1+ sin2A)/(cos2A)
=(sin2A+1)
/(cos^2A-sin^2A)
=(2cosA*sinA+cos^2A+sin^2A)
/(cosA+sinA)(cosA-sinA)
=(cosA+sinA)(cosA+sinA)
/(cosA+sinA)(cosA-sinA)
=(cosA+sinA)/(cosA-sinA)
RHS.
Hope it’s helpful......... ☺
Thanks
Mark me as brainliest :-)