Math, asked by aditya2020222003, 1 year ago

prove that(1- sin 2x) /(1+sin 2x) =
tan²(π/4 -x)
  \frac{(1 -  \sin(2x) )}{(1 -  \sin(2x) )} =  \ {{tan(( \frac{\pi}{4} )  - x}})^{2}
class 11​

Answers

Answered by Anonymous
11

 \underline {\textbf{\large {Step by step explanation }}}

\underline {\textbf{\large{To prove:}}}

 \frac{(1 - \sin(2x) )}{(1 + \sin(2x) )} = \ {{tan^2(( \frac{\pi}{4} ) - x}})

\underline {\textbf{\large{proof:}}}

[refer the attachment for the proof ]

{\textbf{\large{LHS = RHS}}}

hence proved.

__________________________________

\underline {\textbf{\large{formulae used:}}}

1)) sin²Φ + cos²Φ = 1

2)) ( a + b) ² = a² + b² + 2ab

3)) ( a - b ) ² = a² + b² - 2ab

4)) tan (A - B) = \frac{tanA - tanB}{1 + tanA. tanB }\\

Attachments:
Similar questions