Prove that √ (1+Sin A/1-SinA) = SecA + Tan A
Answers
Answered by
17
Answer:
√ (1+Sin A/1-SinA) = SecA + Tan A
Multiplying 1+ sinA in LHS under roots
= √ [(1+SinA)²/(1-SinA)(1 + sinA)]
= √ [(1+SinA)²/(cos²A)] { Sin²A + cos²A =1}
= 1 + sinA / cosA
= 1/cosA + sinA/cosA
= secA + tanA
∴ LHS = RHS
HOPE THIS HELPS YOU...........
PLZ MARK AS BRAINLEST..........
Answered by
5
To Prove:
Solution:-
Now rationalise it!
Now multiply in LHS
Now apply Identity:
(A+B)(A-B)=A²-B²
Now applying identity:
• 1-sin²A=Cos²A
Now taking denominator for both numerator
Applying formula:
Similar questions