Math, asked by suklakanta71, 9 months ago

Prove that 1+Sin theta /1-Sin theta =(sec theta+tan theta) ^ 2​

Answers

Answered by rajeevr06
2

Answer:

LHS

 \frac{1 +  \sin( \alpha ) }{1 -  \sin( \alpha ) }  =  \frac{1 +  \sin( \alpha ) }{1 -  \sin( \alpha ) }  \times  \frac{1 +  \sin( \alpha ) }{1 +  \sin( \alpha ) }  =

 \frac{(1 + sin \:  \alpha ) {}^{2} }{1 - sin {}^{2} \alpha  }  =  \frac{(1 + sin \:  \alpha ) {}^{2} }{cos {}^{2}  \alpha }  = ( \frac{1 + sin \:  \alpha }{cos \:  \alpha } ) {}^{2}

 = ( \frac{1}{cos \:  \alpha }  +  \frac{sin \:  \alpha }{cos \:  \alpha } ) {}^{2}  = (sec {}^{2}  \alpha  + tan {}^{2}  \alpha ) {}^{2}

RHS. Proved.

Similar questions