Math, asked by yashgup03, 4 months ago

prove that (1+sin theta - cos theta /1 + sin theta + cos theta )²= 1-cos theta/1+cos theta​

Answers

Answered by Anonymous
2

TO PROVE :-

 \\  \sf \: { \left( \dfrac{1 + sin\theta - cos\theta}{1 + sin\theta + cos\theta}\right)}^{2}  =  \dfrac{1 - cos\theta}{1 + cos\theta}  \\  \\

SOLUTION :-

 \\  \sf \: L.H.S =   { \left( \dfrac{1 + sin\theta - cos\theta}{1 + sin\theta + cos\theta}\right)}^{2}  \\  \\  \\  \implies  \sf \:  \dfrac{ {(1 + sin\theta - cos\theta)}^{2} }{ {(1 + sin\theta + cos\theta)}^{2} }  \\   \\

For numerator ,

(a-b)² = a² + 2ab + b²

  • a = 1 + sinø
  • b = cosø

 \\

For denominator ,

(a+b)² = a² + 2ab + b²

  • a = 1 + sinø
  • b = cosø

 \\    \\  \implies \sf \:  \dfrac{( {1 + sin\theta)}^{2}  - 2(1 + sin\theta)(cos\theta) +  {cos}^{2}\theta }{( {1 + sin\theta)}^{2} + 2(1 + sin\theta)(cos \theta) +  {cos}^{2} \theta}  \\  \\

cos²ø = 1 - sin²ø

 \\  \implies \sf \:  \dfrac{( {1 +  sin\theta)}^{2}   -  2(1 + sin\theta)(cos\theta) + (1 -  {sin}^{2}\theta) }{( {1 + sin\theta)}^{2}  + 2(1 + sin\theta)(cos\theta) + (1 -  {sin}^{2}\theta) }  \\  \\  \\

a² - b² = (a+b)(a-b)

  • a = 1
  • b = sinø

 \\ \implies \sf \:  \dfrac{( 1 +  {sin\theta)}^{2} - 2(1 + sin\theta)(cos\theta) + (1 + sin\theta)(1 - sin\theta) }{(1 +  {sin\theta)}^{2}  + 2(1 + sin\theta)(cos\theta) + (1 + sin\theta)(1 - sin\theta)}  \\  \\

Taking (1+sinø) common ,

 \\ \implies \sf \:  \dfrac{ \cancel{(1 + sin\theta)}(1 +  \cancel{sin\theta} - 2cos\theta + 1 -  \cancel{sin\theta})}{ \cancel{(1 + sin\theta)}(1 +  \cancel{sin\theta }+ 2cos\theta + 1 -  \cancel{sin\theta})}  \\  \\  \\  \implies \sf \:  \dfrac{2 - 2cos\theta}{ 2+ 2cos\theta}  \\  \\

Taking 2 common ,

 \\  \implies \sf \:  \dfrac{ \cancel2(1 - cos\theta)}{ \cancel2(1 + cos\theta)}  \\  \\  \\  \implies \sf \:  \dfrac{1 - cos\theta}{1 + cos\theta}  = R.H.S \:  \:  \:  \:  \:  \: (verified)

Similar questions