Math, asked by rashichauhan268, 5 months ago

prove that :1 - sin2A/(1+cosA) = cos A.....no spamming...✖️☠️​

Attachments:

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given to prove:

 \rm \mapsto 1 -  \dfrac{ { \sin}^{2}(x) }{1 +  \cos(x) }  =  \cos(x)

Proof:

Taking LHS,

 \rm 1 -  \dfrac{ { \sin}^{2}(x) }{1 +  \cos(x) }

 \rm =  \dfrac{1 +  \cos(x)  -  { \sin}^{2}(x) }{1 +  \cos(x) }

Now, we know that,

➡ sin²(x) + cos²(x) = 1

➡ sin²(x) = 1 - cos²(x)

 \rm =  \dfrac{1 +  \cos(x)  -  (1 -  \cos^{2} (x) ) }{1 +  \cos(x) }

Applying formula a² - b² = (a + b)(a - b), we get,

 \rm =  \dfrac{1 +  \cos(x)  -  (1 +  \cos(x))(1 -  \cos(x))  }{1 +  \cos(x) }

Now, taking 1 + cos(x) as common, we get,

 \rm =  \dfrac{(1 +  \cos(x)) \{1  -  (1 -  \cos(x) \}}{1 +  \cos(x) }

 \rm =  \dfrac{(1 +  \cos(x)) \{ \cos(x) \}}{1 +  \cos(x) }

 \rm =  \cos(x)

= RHS (Hence Proved)

Answered by pinkybansal1101
133

Answer:

\huge\boxed{\fcolorbox{green} {black}{\color{yellow}{REQUIRED ANSWER —}}}

\boxed{\boxed{1 -  \frac{ { \sin( a ) }^{2} }{1 +  \cos(a) }  =  \cos(a) }}

\huge\boxed{\fcolorbox{purple} {black}{\color{yellow}{PROOF — }}}

Taking LHS :

</u></strong><strong><u>\</u></strong><strong><u>large</u></strong><strong><u> 1 -  \frac{ { \sin( a ) }^{2} }{1 +  \cos(a) }

Taking LCM

</strong><strong>\</strong><strong>large</strong><strong> =  \frac{1 +  \cos(a)  -  { \sin(a) }^{2} }{1 +  \cos(a) }

</strong><strong>\</strong><strong>large</strong><strong> =  \frac{1 +  \cos(a)  - (1 -  { \cos(a) )}^{2} }{1 +  \cos(a) }

Applying \:  \:  a²-b² \:  = \: (a+b)(a-b)

</strong><strong>\</strong><strong>large</strong><strong> =  \frac{1 +  \cos(a)  - (1 +  \cos(a)  )(1 -  \cos(a)) }{1 +  \cos(a) }

Now  \:  \: we   \: \: take  \:  \: 1+cos(a)  \:  \: common</strong></p><p><strong>

</strong><strong>\</strong><strong>large</strong><strong> =  \frac{(1 +  \cos(a) )(1 - (1 - \cos(a)  ))}{1 +  \cos(a) }

1+ cos(a) cancels out

</strong><strong>\</strong><strong>large</strong><strong> = (1 - 1 +  \cos(a) ) =  \cos(a)

.....LHS = RHS

....................(Hence Proved)

_______________

Trignometrical Ratios Identites(one is used above as well)are :

 {\implies \sin( \alpha ) }^{2}  +   { \cos( \alpha ) }^{2}  = 1

\implies1 +  {\tan( \alpha ) }^{2}  =  { \sec( \alpha ) }^{2}

\implies 1 +  { \cot( \alpha ) }^{2}  =  { \csc( \alpha ) }^{2}

___________________

Mark as BRAINLIEST

{\huge{\underline{\overline{\rm{\color{yellow}{\longrightarrow @phenom \longleftarrow}}}}}}</p><p></p><p>

Similar questions