Math, asked by MartinHembrom, 11 months ago

prove that:1/sin2A-1/sin2B=cos2A-cos2B/sin2A*sin2B​

Answers

Answered by ITzBrainlyGuy
4

Answer:

 \frac{1}{ { \sin(a) }^{2}  }  -  \frac{1}{ { \sin(b) }^{2} }  =  \frac{ { \cos(a) }^{2} -  { \cos(b) }^{2}  }{ { \sin(a) }^{2}  .  { \sin(b) }^{2} }

taking LHS

 =  \frac{ { \sin(b) ^{2}-  { \sin(a) }^{2} } }{ { \sin(a) }^{2} . { \sin(b) }^{2} }

 =  \frac{1 -  { \cos(b) }^{2} - (1 -  { \cos(a) }^{2} ) }{ { \sin(a) }^{2}. { \sin(b) }^{2}  }

 =  \frac{1 -  { \cos(b) }^{2}  - 1 +  { \cos(a) }^{2}  }{ { \sin(a) }^{2}. { \sin(b) }^{2}  }

 =  \frac{ { \cos(a) }^{2}  -  { \cos(b) }^{2} }{ { \sin(a) }^{2}. { \sin(b) }^{2}  }

LHS=RHS

Hope this helps you please mark it as brainliest

Answered by sreemyd2008
0

Answer:

damalu dymelu dandanakka nakka nakka vendu tanindathu kada mathsku vanajatha pidu

Similar questions