Math, asked by GopichandNishad11, 1 year ago

prove that 1 - sin2x / 1 + sin2x = tan²(π/4 - x)

Answers

Answered by Science2005
58
hope this is useful for you
Attachments:

Science2005: please mark this answer as brainliest
Answered by sharonr
27

\text { Proved that } \frac{1-\sin 2 x}{1+\sin 2 x}=\tan ^{2}\left(\frac{\pi}{4}-x\right)

Solution:

Need to prove:

\frac{1-\sin 2 x}{1+\sin 2 x}=\tan ^{2}\left(\frac{\pi}{4}-x\right)

Lets solve Left hand side

\frac{1-\sin 2 x}{1+\sin 2 x}

\text { As } \sin ^{2} x+\cos ^{2} x=1 \text { and } \sin 2 x=2 \sin x \cos x

=>\frac{1-\sin 2 x}{1+\sin 2 x}=\frac{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x}{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}

=>\frac{1-\sin 2 x}{1+\sin 2 x}=\frac{(\cos x-\sin x)^{2}}{(\cos x+\sin x)^{2}}

\begin{aligned}&=>\frac{1-\sin 2 x}{1+\sin 2 x}=\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)^{2}\\\\&=>\frac{1-\sin 2 x}{1+\sin 2 x}=\left(\frac{\cos x\left(1-\frac{\sin x}{\cos x}\right)}{\cos x\left(1+\frac{\sin x}{\cos x}\right)}\right)^{2}\\\\&\Rightarrow \frac{1-\sin 2 x}{1+\sin 2 x}=\left(\frac{1-\tan x}{1+\tan x \times 1}\right)^{2}\end{aligned}

\text { As } \tan \left(\frac{\pi}{4}\right)=1

=>\frac{1-\sin 2 x}{1+\sin 2 x}=\left(\frac{\tan \left(\frac{\pi}{4}\right)-\tan x}{1+\tan x \times \tan \left(\frac{\pi}{4}\right)}\right)^{2}

\text { Using } \tan (\mathrm{A}-\mathrm{B})=\frac{\tan (\mathrm{A})-\tan (B)}{1+\tan (A) \times \tan (B)}

\begin{aligned}&=>\frac{1-\sin 2 x}{1+\sin 2 x}=\left(\tan \left(\frac{\pi}{4}-x\right)\right)^{2}\\\\&=>\frac{1-\sin 2 x}{1+\sin 2 x}=\tan ^{2}\left(\frac{\pi}{4}-x\right)\end{aligned}

\text { Hence proved that } \frac{1-\sin 2 x}{1+\sin 2 x}=\tan ^{2}\left(\frac{\pi}{4}-x\right)

Learn more about trignometric identities

Prove that (tan theta/1-cot theta) + cot theta/1-tan theta= 1 + sec theta*cosec theta

https://brainly.in/question/2552959

Tan square A minus tan square B equals to sin square A minus sin square B / cos square A cos square B

https://brainly.in/question/2372272

Similar questions