Math, asked by mdsadiq3, 1 year ago

prove that √1-sinA/1+sinA=secA-tanA

Answers

Answered by Samsung111
72
√1-sinA/1+sinA=secA-tanA
L.H.S
√1-sinA/1+sinA
multiple by 1-SinA
√1-sinA/1+sinA×1-SinA/1-SinA
√(1-SinA)^2/√1-(Sin^2A)
1-SinA/√Cos^2
1-SinA/CosA
1/CosA-SinA/CosA
SecA-TanA

Hence Proved

hetan1: hi
hetan1: baro
Answered by harendrachoubay
37

\sqrt{\dfrac{1-\sin A}{1+\sin A} }=\sec A-\tan A, proved.

Step-by-step explanation:

We have,

L.H.S. = \sqrt{\dfrac{1-\sin A}{1+\sin A} }

Rationalising numerator and denominator by \sqrt{1-\sin A}, we get

= \sqrt{\dfrac{1-\sin A}{1+\sin A}\times \dfrac{1-\sin A}{1-\sin A}}

= \sqrt{\dfrac{(1-\sin A)^{2} }{1- \sin^{2} A}

= \sqrt{\dfrac{(1-\sin A)^{2} }{\cos^{2} A}

[ ∵ 1- \sin^{2} A}=\cos^{2} A ]

= \dfrac{(1-\sin A) }{\cos A}

= \dfrac{1}{\cos A} -\dfrac{\sin A}{\cos A}

[ \dfrac{1}{\cos A} =\sec A and \dfrac{\sin A}{\cos A} =\tan A ]

= \sec A-\tan A

= R.H.S.

Hence, it is proved.

Similar questions