prove that √1-sinA/1+sinA=secA-tanA
Answers
Answered by
72
√1-sinA/1+sinA=secA-tanA
L.H.S
√1-sinA/1+sinA
multiple by 1-SinA
√1-sinA/1+sinA×1-SinA/1-SinA
√(1-SinA)^2/√1-(Sin^2A)
1-SinA/√Cos^2
1-SinA/CosA
1/CosA-SinA/CosA
SecA-TanA
Hence Proved
L.H.S
√1-sinA/1+sinA
multiple by 1-SinA
√1-sinA/1+sinA×1-SinA/1-SinA
√(1-SinA)^2/√1-(Sin^2A)
1-SinA/√Cos^2
1-SinA/CosA
1/CosA-SinA/CosA
SecA-TanA
Hence Proved
hetan1:
hi
Answered by
37
, proved.
Step-by-step explanation:
We have,
L.H.S. =
Rationalising numerator and denominator by , we get
[ ∵ ]
[ ∵ and ]
=
= R.H.S.
Hence, it is proved.
Similar questions