Prove that (1-sinA+cosA)^2=2(1-sinA)(1+cosA)
Answers
Answered by
1
By using identity,
(a-b+c)^2 = a^2+b^2+c^2-2ab-2bc+2ca
(1-sinA+cosA)^2 = 1+sin^2 A + cos^2 A - 2sinA - 2sinAcosA + 2cosA
= 2 - 2sinA -2sinAcosA + 2cosA
= 2(1+cosA) - 2sinA(1 + cosA)
= (2-2sinA)(1+cosA)
= 2(1-sinA)(1+cosA)
Similar questions