prove that 1- sinAcosA /cosA ( secA - cosecA ) × sin^2A - cos^2A / sin^3 A+ cos^3 A = sinA
Answers
Answer:
Step-by-step explanation:
=1-sinAcosA/cosA(secA-cosecA)*sin^2A-cos^2A/sin^3A+cos^3A=sinA
=1-sinA.cosA/cosA(1/cosA-1/sinA) *(sinA-cosA)(sinA+cosA)/(sinA+cosA)(sin^2A+cos^2A-sinA.cosA)
= 1-sinA.cosA/cosA.sinA-cosA/sinA.cosA*(sinA-cosA)(sinA+cosA)/(sinA+cosA)(1-sinA.cosA)
= 1/1/sinA= sinA
Question :
Prove that :
To find :
To prove that LHS = RHS.
Solution :
By solving the LHS , we get :
We know that , and , so using this and Substituting it in the equation , we get :
Now using this identity and substituting it in the equation , we get :
Now using this identity and substituting it in the equation , we get :
We know that , , so by substituting it in the equation , we get :
By cancelling the like terms , we get :
Now putting LHS and RHS together , we get :
Hence , LHS = RHS proved.