prove
that
(1+ sino + coso
) =(1+Sine)(1+coso)
Attachments:
Answers
Answered by
5
Step-by-step explanation:
To Prove : (1 + sinθ + cosθ)² = 2(1 + sinθ)(1 + cosθ)
Proof : L.H.S. = (1 + sinθ + cosθ)²
- Identity : (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = 1, b = sinθ, c = cosθ
→ (1)² + (sinθ)² + (cosθ)² + 2(1)(sinθ) + 2(sinθ)(cosθ) + 2(cosθ)(1)
→ 1 + sin²θ + cos²θ + 2sinθ + 2sinθcosθ + 2cosθ
- Identity : sin²θ + cos²θ = 1
→ 1 + 1 + 2sinθ + 2sinθcosθ + 2cosθ
→ 2 + 2sinθ + 2sinθcosθ + 2cosθ
Taking common terms out.
→ 2(1 + sinθ) + 2cosθ(sinθ + 1)
Rearranging the terms.
→ 2(1 + sinθ) + 2cosθ(1 + sinθ)
→ (2 + 2cosθ)(1 + sinθ)
Taking common terms out again.
→ 2(1 + cosθ)(1 + sinθ)
= R.H.S.
Hence, proved !!
Similar questions