prove that : 1-sintheta/1+sintheta = (sectheta - tantheta)²
Answers
Answered by
5
the answer u r searching for is here....
LHS=1−sinθ/1+sinθ
=1−sinθ/1+sinθ×1−sinθ/1−sinθ
=(1−sinθ)^2/1−sinθ^2
=(1−sinθ)^2/cosθ^2 as 1-sinθ^2=cosθ^2
=(1−sinθ/cosθ)^2
=(1/cosθ−sinθ/cosθ)^2
=(secθ−tanθ)^2=RHS as secθ=1/cosθ and tan theta = sin / cos
here ur proveis clear
so thanks and rate me. plz
LHS=1−sinθ/1+sinθ
=1−sinθ/1+sinθ×1−sinθ/1−sinθ
=(1−sinθ)^2/1−sinθ^2
=(1−sinθ)^2/cosθ^2 as 1-sinθ^2=cosθ^2
=(1−sinθ/cosθ)^2
=(1/cosθ−sinθ/cosθ)^2
=(secθ−tanθ)^2=RHS as secθ=1/cosθ and tan theta = sin / cos
here ur proveis clear
so thanks and rate me. plz
mandeep28:
thanx a lot..
Similar questions