Math, asked by lkm2003aries13, 1 year ago

prove that(1+tan^2theata)+(1+1/tan^2theata)=1/sin^2theata-sin^4theata

Answers

Answered by Akshaymas
1

(1 +  \tan {}^{2} theta) + (1 + 1 \div  \tan {}^{2} theta) = 1 \div  \sin {}^{2}  -  \sin {}^{4} theta \\ sec {}^{2} theta + (1 +  \cos {}^{2} theta \div  \sin {}^{2} theta) = 1 \div  \sin {}^{2} theta -  \sin {}^{4} theta \\ 1 \div  \cos {}^{2} theta  + 1 \div  \sin {}^{2} theta = 1  \div  \sin {}^{2} theta -  \sin ^{4}  theta \\ sin ^{2} theta +  \cos {}^{2} theta \div (1 -  \sin {}^{2} theta)( \sin {}^{2} theta) = 1 \div  \sin {}^{2} theta -  \sin {}^{4} theta \\ 1 \div  \sin {}^{2}  theta -  \sin {}^{4} theta = 1 \div  \sin {}^{2} theta -  \sin {}^{4} theta \\ l.h.s = r.h.s \\ thank \: you \\

Akshaymas: Please mark as Brainliest
Similar questions