Math, asked by priyarambabu6, 2 months ago

prove that (1+tan^2theta)+(1+1/tan^2theta)=1/sin^2theta-sin^4theta​

Answers

Answered by sandy1816
0

(1 +  {tan}^{2}  \theta) + (1 +  \frac{1}{ {tan}^{2}  \theta} ) \\  =  {sec}^{2}  \theta + (1 +  {cot}^{2}  \theta) \\  =  {sec}^{2}  \theta +  {cosec}^{2}  \theta \\  =  \frac{1}{ {cos}^{2}  \theta}  +  \frac{1}{ {sin}^{2}  \theta}  \\  =  \frac{1}{ {sin}^{2} \theta {cos}^{2}  \theta }  \\  =  \frac{1}{ {sin}^{2} \theta(1 -  {sin}^{2}  \theta) }  \\  =  \frac{1}{ {sin}^{2} \theta -  {sin}^{4} \theta  }

Hopes it helps

Similar questions