Math, asked by das980377, 11 months ago

Prove that :1 - {tan}^{4} A/1 + {tan}^{4} a=cosa+sinA/cosA-sinA


Answers

Answered by harendrachoubay
4

\dfrac{1-\tan^4 A}{1+\tan^4 A} =\dfrac{\cos A+\sin A}{\cos A-\sin A}, proved.

Step-by-step explanation:

Prove that, \dfrac{1-\tan^4 A}{1+\tan^4 A} =\dfrac{\cos A+\sin A}{\cos A-\sin A}.

L.H.S.= \dfrac{1-\tan^4 A}{1+\tan^4 A}

= \dfrac{1-\dfrac{\sin^4 A}{\cos^4 A}}{1+\dfrac{\sin^4 A}{\cos^4 A}}

= \dfrac{\cos^4 A-\sin^4 A}{\cos^4 A+\sin^4 A}

= \dfrac{(\cos^2 A)^2-(\sin^2 A)^2}{(\cos^2 A)^2+(\sin^2 A)^2}

= \dfrac{(\cos^2 A+\sin^2 A)(\cos^2 A-\sin^2 A)}{(\cos^2 A)^2+(\sin^2 A)^2}

Using the algebraic identity,

a^{2}-b^{2}=(a+b)(a-b)

= \dfrac{(1)(\cos^2 A-\sin^2 A)}{(\cos^2 A+\sin^2 A)^2-2\cos^2 A\sin^2 A}

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta = 1

= \dfrac{(\cos A+\sin A)(\cos A-\sin A)}{(1)^2-2\cos^2 A.\sin^2 A}

=\dfrac{1+\sin 2A}{\cos 2A}

R.H.S. = \dfrac{\cos A+\sin A}{\cos A-\sin A}

= \dfrac{\cos A+\sin A}{\cos A-\sin A}\times \dfrac{\cos A+\sin A}{\cos A+\sin A}

= \dfrac{(\cos A+\sin A)^2}{\cos^2 A-\sin^2 A}

=\dfrac{\cos^2 A+\sin^2 A+2\sin A\cos A}{\cos^2 A-\sin^2 A}

= \dfrac{1+\sin 2A}{\cos 2A}  [ ∵ \cos 2A=\cos^2 A-\sin^2 A

Hence, \dfrac{1-\tan^4 A}{1+\tan^4 A} =\dfrac{\cos A+\sin A}{\cos A-\sin A}, proved.

Similar questions