Math, asked by vaishnavi2513, 1 year ago

prove that 1 + tan squared theta upon 1 + cot squared theta is equals to 1 minus 10 theta upon 1 minus cot theta square is equals to tan square theta

Answers

Answered by aquialaska
280

Answer:

To Prove:

\frac{1+tan^2\,\theta}{1+cot^2\,\theta}=(\frac{1-tan\,\theta}{1-cot\,\theta})^2=tan^2\,\theta

Consider,

\frac{1+tan^2\,\theta}{1+cot^2\,\theta}

=\frac{1+\frac{sin^2\,\theta}{cos^2\,\theta}}{1+\frac{cos^2\,\theta}{sin^2\,\theta}}

=\frac{\frac{cos^2\,\theta+sin^2\,\theta}{cos^2\,\theta}}{\frac{sin^2\,\theta+cos^2\,\theta}{sin^2\,\theta}}

=\frac{\frac{1}{cos^2\,\theta}}{\frac{1}{sin^2\,\theta}}

=\frac{sin^2\,\theta}{cos^2\,\theta}

=tan^2\,\theta

Now Consider,

(\frac{1-tan\,\theta}{1-cot\,\theta})^2

=\frac{(1-tan\,\theta)^2}{(1-cot\,\theta)^2}

=\frac{1+tan^2\,\theta-2tan\,\theta}{1+cot^2\,\theta-2cot\,\theta}

=\frac{sec^2\,\theta-2tan\,\theta}{cosec^2\,\theta-2cot\,\theta}

=\frac{\frac{1}{cos^2\,\theta}-\frac{2sin\,\theta}{cos\,\theta}}{\frac{1}{sin^2\,\theta}-\frac{2cos\,\theta}{sin\,\theta}}

=\frac{\frac{1-2\:sin\,\theta\:cos\,\theta}{cos^2\,\theta}}{\frac{1-2\:cos\,\theta\:sin\,\theta}{sin^2\,\theta}}

=\frac{\frac{1}{cos^2\,\theta}}{\frac{1}{sin^2\,\theta}}

=\frac{sin^2\,\theta}{cos^2\,\theta}

=tan^2\,\theta

Hence Proved.

Answered by yashdeshmukh691
53

Step-by-step explanation:

Hope you like it

mark as brainliest

Attachments:
Similar questions