Prove that (1+tan theta+sec theta)(1+cot theta -cosec theta)=2
Answers
Answered by
11
Step-by-step explanation:
Given: (1+tan∅+sec∅)(1+cot∅-cosec∅)
To prove: =2
then,
here, both sin∅.cos∅ gets cancelled
Hence proved.....
Answered by
1
Step-by-step explanation:
tanA−sinA
=
secA+1
secA−1
Taking LHS
tanA+sinA
tanA−sinA
=
cosA
sinA
+sinA
cosA
sinA
−sinA
=
sinAsecA+sinA
sinAsecA−sinA
=
secA+1
secA−1
LHS=RHS
Hence proved.
(i)
(1+tanA+secA)(1+cotA−cosecA)
(1+
cosA
sinA
+
cosA
1
)(1+
sinA
cosA
−
sinA
1
)
=(
cosA
cosA+sinA+1
)(
sinA
cosA+sinA−1
)
=
sinAcosA
(cosA+sinA)
2
−1
=
sinAcosA
sin
2
A+cos
2
A+2sinAcosA−1
=
sinAcosA
1+2sinAcosA−1
=2
Similar questions