Math, asked by sanket765, 10 months ago

prove that 1 + tan theta square + 1 + cot theta square equal to sec theta + cosec theta square ​

Answers

Answered by manojverma20022003
11

Answer:

Here's ur answer!!!!!!!!

Attachments:
Answered by harendrachoubay
16

(1+\tan \theta)^2+(1+\cot \theta)^2=(\sec \theta+\csc\theta)^2, proved.

Step-by-step explanation:

To prove that, (1+\tan \theta)^2+(1+\cot \theta)^2=(\sec \theta+\csc\theta)^2.

L.H.S. = (1+\tan \theta)^2+(1+\cot \theta)^2

= 1+\tan^2 \theta+2\tan \theta+1+\cot^2 \theta+2\cot \theta

Using the algebraic identity,

(a+b)^{2}=a^{2}+b^{2}+2ab

= (1+\tan^2 \theta)+2\tan \theta+(1+\cot^2 \theta)+2\cot \theta

Using the trigonometric identity,

\sec^2 \theta-\tan^2 \theta=1

\sec^2 \theta=1+\tan^2 \theta and

\csc^2 \theta-\cot^2 \theta=1

\csc^2 \theta=1+\cot^2 \theta

= \sec^2 \theta+\csc^2 \theta++2(\tan \theta+\cot \theta)

= \sec^2 \theta+\csc^2 \theta+2(\dfrac{\sin \theta}{\cos \theta} +\dfrac{\cos \theta}{\sin \theta})

= \sec^2 \theta+\csc^2 \theta+2\dfrac{\sin^2 \theta+\cos^2 \theta}{\sin \theta\cos \theta}

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta=1

= \sec^2 \theta+\csc^2 \theta+2\dfrac{1}{\sin \theta\cos \theta}

= \sec^2 \theta+\csc^2 \theta+2\sec \theta\csc \theta

= (\sec \theta+\csc\theta)^2

= R.H.S., proved.

Thus, (1+\tan \theta)^2+(1+\cot \theta)^2=(\sec \theta+\csc\theta)^2, proved

Similar questions