Math, asked by kborgohain0, 1 year ago

prove that (1+tan17°) (1+tan28°) =2

Answers

Answered by MaheswariS
1

\underline{\textsf{To find:}}

\mathsf{(1+tan17^{\circ})(1+tan28^{\circ})=2}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{17^{\circ}+28^{\circ}=45^{\circ}}

\mathsf{tan(17^{\circ}+28^{\circ})=tan45^{\circ}}

\mathsf{Using,\boxed{\bf\;tan(A+B)=\dfrac{tanA+tanB}{1-tanA\,tanB}}}

\implies\mathsf{\dfrac{tan17^{\circ}+tan28^{\circ}}{1-tan17^{\circ}\,tan28^{\circ}}=1}

\implies\mathsf{tan17^{\circ}+tan28^{\circ}=1-tan17^{\circ}\,tan28^{\circ}}

\implies\mathsf{tan17^{\circ}+tan28^{\circ}+tan17^{\circ}\,tan28^{\circ}=1}

\textsf{Add 1 on bothsides, we get}

\implies\mathsf{1+tan17^{\circ}+tan28^{\circ}+tan17^{\circ}\,tan28^{\circ}=2}

\implies\mathsf{1(1+tan17^{\circ})+tan28^{\circ}(1+tan17^{\circ})=2}

\therefore\boxed{\mathsf{(1+tan17^{\circ})(1+tan28^{\circ})=2}}

\underline{\textsf{Find more:}}

यदि A+B+C= 90 तो सिद्ध कीजिए: tanAtanB+tanBtanC+tanCtanA=1

https://brainly.in/question/15268179

Tan 15 .tan25+tan15.tan50+tan25.tan50​

https://brainly.in/question/13615706

Similar questions