prove that 1-tan2A÷1+tan2A =1-2sin2A
Answers
Answered by
0
Step-by-step explanation:
1 - Tan²A / 1 + Tan²A = 1 - 2 sin²A
LHS = 1 - Tan²A / 1 + Tan²A
{TanA = sinA/cosA.... ( Tan²A = sin²A/cos²A) }
= 1 - sin²A/cos²A /1 + sin²A/cos²
{ 1/1 = 1... i.e. (sin²A/cos²A)/1 = sin²A/cos²A }
= 1 - sin²A/cos²A + sin²A/cos²A
{ a/b + c/d = a×d + c×b / b×d }
=1 - sin²A × cos²A + sin²A × cos²A / cos²A ×cos²A
{by Dividing Above- all cos²A Been cancelled}
= 1 - sin²A + sin²A
=1 - 2sin²A ---- { sin + sin = 2 sin } --------- 1
RHS= 1 - 2sin²A ----------------------- 2
:· by equations 1 and 2
RHS = LHS
:· 1-tan²A/ 1+tan²A = 1 - 2sin²A
Attachments:
Similar questions