Math, asked by kunwardurgesh3635, 9 months ago

Prove that: (1/tan3A + tanA) - (1/cot3A + cotA) = cot4A

Answers

Answered by Anonymous
59

Question :

Prove that :

 \dfrac{1}{ \tan(3a)  +  \tan(a) }  -  \dfrac{1}{ \cot(3a)  +  \cot(a) }  =  \cot(4a)

Trignometric Formula's :

1) tan(A+B)= tanA+tanB/(1-tanAtanB )

2) sin2A = 2 sinA cosA

3)cos2A = cos²A - sin²A

4)tan2A = 2 tanA / (1 - tan²A)

Solution :

LHS

 =  \dfrac{1}{ \tan(3a) +  \tan(a)  }  -  \dfrac{1}{ \cot(3a) +  \cot(a)  }

 =  \dfrac{1}{ \tan(3a)  +  \tan(a) }  -  \dfrac{1}{ \frac{1}{ \tan(3a) } +  \frac{1}{ \tan(a) }  }

 =  \dfrac{1}{ \tan(3a) +  \tan(a)  }  -  \dfrac{1}{ \frac{ \tan(a) +  \tan(3a)  }{ \tan(3a) \tan(a)  } }

 =  \dfrac{1}{ \tan(3a)  +  \tan(a) } -  \dfrac{ \tan(a)  \tan(3a) }{ \tan(3a)  +  \tan(a) }

 =  \dfrac{1 -  \tan(3a)  \tan(a) }{ \tan(3a) +  \tan(a)  }

 =  \dfrac{1}{ \frac{ \tan(3a) +  \tan(a)  }{1 -  \tan(a) \tan(3a)  } }

Now use Formula tan(A+B)= tanA+tanB/(1-tanAtanB )

 =  \dfrac{1}{ \tan( 3a + a) }

 =  \dfrac{1}{ \tan(4a) }

 =  \cot(4a)

RHS = cot 4A

⇒LHS = RHS

Hence proved!

_________________________

More Trigonometric Formula's

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1

Similar questions