Prove that
(1+tanA-secA)×(1+tanA+secA)=2tanA
Answers
Answered by
5
Step-by-step explanation:
we solve L. H. S then it equals to R. H .S
Attachments:
Answered by
4
Answer:
LHS,
= 1 + tanA + SecA + TanA + Tan²A + TanA SecA - SecA - SecA TanA - Sec²A
= 1 + tanA + TanA + Tan²A - Sec²A + SecA + TanA SecA - TanA SecA
= 1 + 2TanA + Tan²A - Sec²A
= 1 + 2TanA - 1
= 2TanA
= RHS
Similar questions