prove that √11-√6 is irrational
Answers
Step-by-step explanation:
Let √11 be rational , then there should exist √11=p/q ,where p & q are coprime and q≠0(by the definition of rational number). So,
√11= p/q
On squaring both side, we get,
11= p²/q² or,
11q² = p². …………….eqñ (i)
Since , 11q² = p² so ,11 divides p² & 11 divides p
Let 11 divides p for some integer c ,
so ,
p= 11c
On putting this value in eqñ(i) we get,
11q²= 121p²
or, q²= 11p²
So, 11 divides q² for p²
Therefore 11 divides q.
So we get 11 as a common factor of p & q but we assumpt that p & q are coprime so it contradicts our statement. Our supposition is wrong and √11 is irrational.
Answer:
Step-by-step explanation:
Let as assume that √11 is a rational number.
A rational number can be written in the form of p/q where q ≠ 0 and p , q are non negative number.
√11 = p/q ....( Where p and q are co prime number )
Squaring both side !
11 = p²/q²
11 q² = p² ......( i )
p² is divisible by 11
p will also divisible by 11
Let p = 11 m ( Where m is any positive integer )
Squaring both side
p² = 121m²
Putting in ( i )
11 q² = 121m²
q² = 11 m²
q² is divisible by 11
q will also divisible by 11
Since p and q both are divisible by same number 11
So, they are not co - prime .
Hence Our assumption is Wrong √11 is an irrational number
and similarly prove √6 is irrational
difference of two irrational no. is irrational