prove that 15+17 √3 is an irrational number
Answers
Answered by
2
√3 is irrational. it multiply and sum with rational then resultant is irrational
Answered by
7
Answer:
Step-by-step explanation:
15+17 √3
Let √3 be rational number, so it can be written as p/q where q is not equal to 0 and p and q is co prime number
√3 = p/q
√3 * q = p
Squaring both side, we get
3 * q² = p²
3 is the factor of p. but it is assumed that p and q are co prime number
Hence our assumption is wrong.
so √3 is irrational number.
Multiplying the rational number with irrational gives irrational number as a result.
17√3 is irrational number.
15 + 17√3 is an irrational number.
Similar questions
Psychology,
9 months ago
Math,
9 months ago
English,
9 months ago
Chemistry,
1 year ago
Economy,
1 year ago