Math, asked by abhinav000chaudhary, 6 months ago

prove that 2/1!+4/3!+6/5!+... ... ... .=e​

Attachments:

Answers

Answered by SrijanShrivastava
0

 \red{TO  \: PROVE} :

 \frac{2}{1!}  +  \frac{4}{3!} +   \frac{6}{5!}  + ... \:  =  \: e

Solution:

  \\    \sf\sum _{k = 1}^{ \infin}  \frac{2k}{(2k - 1)!}

 \\   \sf=  \lim_{  n\to  \infty } \sum_{k = 1} ^{n}  \frac{2k}{(2k  - 1)!}

 \\  = \sf 2 \lim _{n \to \infty } \sum _{k = 0} ^{ \infty }  \frac{k + 1}{(2k + 1)!}

  \\ =  \sf2 \lim _{n \to \infty }(e  -  \frac{2 _{1}F_{2}(2  ; n + 2 ; n +  \frac{5}{2}  ; \frac{1}{4} ) }{(2n + 3)! }-  \frac{2(n + 1) _{1}F_{2}(1;  n + 1 ;n +  \frac{3}{2} ; \frac{1}{4} ) }{(2n + 1)! })

= \sf 2(e -  \frac{e}{2} )

 = e

 \bf  \square \:   proved

Similar questions