prove that (2 +√3) is an irrational number
Answers
Answer: no
Step-by-step explanation:>Answer. Let 2-√3 be rational no. therefore,-√3 is a rational no. ... So,2-√3 is a irrational no.
Answer:
ʙʏ ᴄᴏɴᴛʀᴀᴅɪᴄᴛᴏʀʏ ᴍᴇᴛʜᴏᴅ..
ᴡᴇ ᴀꜱꜱᴜᴍᴇ ᴛʜᴀᴛ 2 + √3 ɪꜱ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
=> 2 + √3 = ᴘ/Q , ᴡʜᴇʀᴇ ᴘ & Q ᴀʀᴇ ɪɴᴛᴇɢᴇʀꜱ, ‘Q’ ɴᴏᴛ = 0.
=> √3 = (ᴘ/Q) - 2
=> √3 = (ᴘ - 2Q)/ Q ………… (1)
=> ʜᴇʀᴇ, ʟʜꜱ √3 ɪꜱ ᴀɴ ɪʀʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
ʙᴜᴛ ʀʜꜱ ɪꜱ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.. ʀᴇᴀꜱᴏɴ- ᴛʜᴇ ᴅɪꜰꜰᴇʀᴇɴᴄᴇ ᴏꜰ 2 ɪɴᴛᴇɢᴇʀꜱ ɪꜱ ᴀʟᴡᴀʏꜱ ᴀɴ ɪɴᴛᴇɢᴇʀ. ꜱᴏ ᴛʜᴇ ɴᴜᴍᴇʀᴀᴛᴏʀ (ᴘ- 2Q) ɪꜱ ᴀɴ ɪɴᴛᴇɢᴇʀ.
& ᴛʜᴇ ᴅᴇɴᴏᴍɪɴᴀᴛᴏʀ ‘Q’ ɪꜱ ᴀɴ ɪɴᴛᴇɢᴇʀ.&‘Q’ ɴᴏᴛ = 0
ᴛʜɪꜱ ᴡᴀʏ, ᴀʟʟ ᴄᴏɴᴅɪᴛɪᴏɴꜱ ᴏꜰ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ ᴀʀᴇ ꜱᴀᴛɪꜱꜰɪᴇᴅ.
=> ʀʜꜱ (ᴘ- 2Q)/Q ɪꜱ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
ʙᴜᴛ , ʟʜꜱ ɪꜱ ᴀɴ ɪʀʀᴀᴛɪᴏɴᴀʟ.
=> ʟʜꜱ ᴏꜰ….. (1) ɪꜱ ɴᴏᴛ = ʀʜꜱ.
=> ᴏᴜʀ ᴀꜱꜱᴜᴍᴘᴛɪᴏɴ, ᴛʜᴀᴛ 2 + √3 ɪꜱ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ, ɪꜱ ɪɴᴄᴏʀʀᴇᴄᴛ..
=> 2 + √3 ɪꜱ ᴀɴ ɪʀʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ
Step-by-step explanation: