Math, asked by virenborse1, 1 month ago

Prove That:2^30+2^29+2^28/2^31+2^30-2^29 = 7/10​

Answers

Answered by dkchakrabarty01
0

Answer:

4×2^28+2×2^28+2^28/(8×2^28+4×2^28-2×2^28)

2^28(4+2+1)/2^28(8+4-2)

=(4+2+1)/(8+4-2)

=7/10 proved Ans

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Prove\: that-} \\

   \sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10}

 \bf \underline{Solution-} \\

{~~~~~~:~~~\implies\sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10} }\\

\textsf{Taking 2²⁸ Common }

\\{~~~~~~:~~~\implies\sf\dfrac{  {2}^{28}( {2}^{2} +  {2}^{1}  +  {2}^{0}  )}{  {2}^{28} ({2}^{3} +  {2}^{2}  -  {2}^{1})  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   \cancel{{2}^{28}}( 4 +  2  +  1  )}{   \cancel{{2}^{28} }(8 +  4 -  2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   1 \times   7}{  1(12 - 2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{  7}{  10}  =  \dfrac{7}{10} } \\

\textsf{LHS = RHS}\\

 \bf \underline{Hence\: proved.} \\

Similar questions