Math, asked by masharma2004, 9 months ago

prove that 2*6*10*14....upto n factors = (2n)!/n! = (n+1)(n+2)....to n factors
(from chapter: permutation and combination

Answers

Answered by saounksh
7

PROOF

FIRST PART

2 \times 6 \times 10 \times 14...n \: factors

=2.6.10.14.18.....[2(2n - 1)]

=(2.1)(2.3)(2.5)......[2(2n - 1)]

={2}^{n}[1.3.5.7.9.........(2n - 1)]

=\frac{ {2}^{n} [1.3.5...(2n - 1)][1.2.3.4......n]}{1.2.3.4.....n}

= \frac{[1.3.5.7...(2n - 1)][2.4.6.8......(2n)]}{1.2.3.4.5.....n}

= \frac{1.2.3.4.5.6.7.8........(2n - 1)(2n)}{1.2.3.4.........n}

= \frac{(2n)!}{n!}

SECOND PART

\frac{(2n)!}{n!}

 =  \frac{1.2.3.4..(n - 1)n(n + 1)(n + 2)...(2n-1)(2n)}{1.2.3.4......(n - 1)n}

 = (n + 1)(n + 2)......(2n - 1)(2n)

Hence Proved

Similar questions