prove that (2-cos²A)(1+2cot²A)=( 2+cot²A)(2- sin²A)
Answers
Answer:
was....go
Step-by-step explanation:
sinθ
1+cosθ
−
1+cosθ
sinθ
=2cotθ , proved.
Step-by-step explanation:
To prove that, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta
sinθ
1+cosθ
−
1+cosθ
sinθ
=2cotθ .
L.H.S. = \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta}
sinθ
1+cosθ
−
1+cosθ
sinθ
To take LCM of denominator part, we get
=\dfrac{(1+\cos \theta)^2-\sin^2 \theta}{\sin \theta(1+\cos \theta)}=
sinθ(1+cosθ)
(1+cosθ)
2
−sin
2
θ
Using the algebraic identity,
(a+b)^{2} =a^{2} +2ab+b^2(a+b)
2
=a
2
+2ab+b
2
=\dfrac{1+\cos^2 \theta+2\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}=
sinθ(1+cosθ)
1+cos
2
θ+2cosθ−sin
2
θ
Using the trigonometric identity,
\sin^2 A+\cos^2 A=1sin
2
A+cos
2
A=1
⇒ \sin^2 A=1-\cos^2 Asin
2
A=1−cos
2
A
=\dfrac{1+\cos^2 \theta+2\cos \theta-(1-\cos^2 \theta)}{\sin \theta(1+\cos \theta)}=
sinθ(1+cosθ)
1+cos
2
θ+2cosθ−(1−cos
2
θ)
=\dfrac{1+\cos^2 \theta+2\cos \theta-1+\cos^2 \theta}{\sin \theta(1+\cos \theta)}=
sinθ(1+cosθ)
1+cos
2
θ+2cosθ−1+cos
2
θ
=\dfrac{2\cos^2 \theta+2\cos \theta}{\sin \theta(1+\cos \theta)}=
sinθ(1+cosθ)
2cos
2
θ+2cosθ
=\dfrac{2\cos \theta(\cos \theta+1)}{\sin \theta(1+\cos \theta)}=
sinθ(1+cosθ)
2cosθ(cosθ+1)
=\dfrac{2\cos \theta}{\sin \theta}=
sinθ
2cosθ
= 2\cot \theta=2cotθ
= R.H.S., proved.
Thus, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta
sinθ
1+cosθ
−
1+cosθ
sinθ
=2cotθ , proved.