Math, asked by BrainlyGovind, 23 days ago

prove that ✓2 is an irrational number ??​

Answers

Answered by SAGARTHELEGEND
9

Answer:

 \huge \sf{\green{\fbox{\red{\fbox{\green{\fbox{\red{ANSWER}}}}}}}}

value of √2 = 1.4142135624

therefore it is an irrational number

Step-by-step explanation:

#SAGARTHELEGEND

Answered by nikkivyshu
5

Answer:

hope it wont help u i think

lol

gudu mrng

Step-by-step explanation:

To prove: √2 is an irrational number.

Proof:

Let us assume that √2 is a rational number.

So it can be expressed in the form p/q where p, q are co-prime integers and q≠0

√2 = p/q

Here p and q are coprime numbers and q ≠ 0

Solving

√2 = p/q

On squaring both the sides we get,

=>2 = (p/q)2

=> 2q2 = p2……………………………..(1)

p2/2 = q2

So 2 divides p and p is a multiple of 2.

⇒ p = 2m

⇒ p² = 4m² ………………………………..(2)

From equations (1) and (2), we get,

2q² = 4m²

⇒ q² = 2m²

⇒ q² is a multiple of 2

⇒ q is a multiple of 2

Hence, p, q have a common factor 2. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√2 is an irrational number.

Similar questions