Prove that √2 is irrational
Answers
Answered by
7
Sol:
Given √2 is irrational number.
Let √2 = a / b wher a,b are integers b ≠ 0
we also suppose that a / b is written in the simplest form
Now √2 = a / b ⇒ 2 = a2 / b2 ⇒ 2b2 = a2
∴ 2b2 is divisible by 2
⇒ a2 is divisible by 2
⇒ a is divisible by 2
∴ let a = 2c
a2 = 4c2 ⇒ 2b2 = 4c2 ⇒ b2 = 2c2
∴ 2c2 is divisible by 2
∴ b2 is divisible by 2
∴ b is divisible by 2
∴a are b are divisible by 2 .
this contradicts our supposition that a/b is written in the simplest form
Hence our supposition is wrong
∴ √2 is irrational number.
Please mark brainliest.........
Given √2 is irrational number.
Let √2 = a / b wher a,b are integers b ≠ 0
we also suppose that a / b is written in the simplest form
Now √2 = a / b ⇒ 2 = a2 / b2 ⇒ 2b2 = a2
∴ 2b2 is divisible by 2
⇒ a2 is divisible by 2
⇒ a is divisible by 2
∴ let a = 2c
a2 = 4c2 ⇒ 2b2 = 4c2 ⇒ b2 = 2c2
∴ 2c2 is divisible by 2
∴ b2 is divisible by 2
∴ b is divisible by 2
∴a are b are divisible by 2 .
this contradicts our supposition that a/b is written in the simplest form
Hence our supposition is wrong
∴ √2 is irrational number.
Please mark brainliest.........
Answered by
5
Answer :
To prove,
√2 is an irrational no.
Proof :
Let √2 be a rational number in the form of p / q where q is not equal to zero at p and q are co-prime integers.
√2 = p/q
Whole sqauring both sides of this equation :-
2 = p^2/q^2
p^2 = 2q^2 (I)
From (I),
2 divided p^2
So, p divides p. (a)
Now , let p= 2k where k is any integer.
Substituting the values , we get :-
(2k)^2 = 2q^2
4k^2 = 2q^2
q^2 = 2k^2 (ii)
From (ii),
2 divides q^2.
Therefore, 2 divides q also. (b)
From statements (a) and (b) , we can say that :-
p and q have a common factor namely 2.
Hence, our assumption that p and q are co-prime is wrong. Hence , √2 is an irrational no.
Hence proved.
This method is called contradiction method.
Similar questions