Math, asked by kumawattushar715, 10 months ago

Prove that √2 is irrational number ​

Answers

Answered by luxhmina81
0

hope it helpful.

thanx.

Attachments:
Answered by SarcasticL0ve
12

\star\;\LARGE{\underline{\underline{\sf{\purple{To\;ProvE:-}}}}}

  • \sf \sqrt{2} \;is\;an\;irrational\;number.

\star\;\LARGE{\underline{\underline{\sf{\purple{Soluti0n:-}}}}}

\normalsize\sf Let\;us\;assume\;that\; \sqrt{2}\;is\;a\;rational\;number. \\\ \normalsize\sf Such\;that,\;a\;and\;b\;are\;integers\;where\;q\; doesn't\;equal\;to\;0. \\ \normalsize\sf and\;are\;coprime\;numbers.

:\implies\sf \sqrt{2} = \dfrac{a}{b}

\;\;\;\;\;\small{\underline{\underline{\sf{\red{\dag\;squaring\;both\;sides:-}}}}}

:\implies\normalsize\sf ( \sqrt{2})^2 = \bigg( \dfrac{a}{b} \bigg)^2 \\\\ :\implies\normalsize\sf 2 = \dfrac{a^2}{b^2} \\\\ :\implies\normalsize\sf 2b^2 = a^2 \\\\ :\implies\normalsize\sf 2 = \dfrac{a^2}{b^2} \\\\ \;\;\bullet\;\;\normalsize\sf 2\;divides\;a^2 \\\\ \;\;\bullet\;\;\normalsize\sf Therefore,\; 2\;also\;divides\;a\;\;\;\;\;[1] \\\\ :\implies\normalsize\sf Lets\;a = 2c\;for\;some\;integer\; \bf{c}. \\\\\ :\implies\normalsize\sf a^2 = 4c^2 \\\\ :\implies\normalsize\sf 2b^2 = 4c^2\;\;\;\;\;[\because\;2b^2 = a^2] \\\\\ :\implies\normalsize\sf b^2 = 2c^2 \\\\ \;\;\bullet\;\;\normalsize\sf 2\;divides\;b^2 \\\\ \;\;\bullet\;\;\normalsize\sf Therefore,\;2\;also\;divides\;b\;\;\;\;\;[2]

\;\;\;\;\normalsize{\underline{\underline{\sf{\red{\dag\;From\;eq[1]\;and\;eq[2]:-}}}}}

2 divides both a and b. Therefore, 2 is a common factor of a and b.

Therefore, it becomes a contradiction the fact that a and b have no common factor other than 1.

This means that our supposition is wrong.

\normalsize{\underline{\underline{\sf{\purple{\dag\;Hence,\; \sqrt{2}\;is\;an\;irrational\;number.}}}}}

 \rule{200}3

Similar questions