Math, asked by hzusb6967, 11 months ago

Prove that 2 minus 3 root 5 is an irrational number sit

Answers

Answered by yunuskhanj786
16

⚠️⚠️Good Afternoon mate⚠️⚠️

THE REQUIRED ANSWER IS BELOW:-

⬇️

⬇️

⬇️

⬇️

⬇️

⬇️

⬇️

⬇️

let \: us \: assume \: that \:  2 - 3 \sqrt{5} </strong><strong>\:</strong><strong> </strong><strong>is \: an \: rational \: number \\ if \: 2 - 3 \sqrt{5} \: is \: rational \: number \: then \\ 2 - 3 \sqrt{5} \:  =   \frac{a}{b}  \:  \:  {where \: a \: and</strong><strong> </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>b \: are \: co \: prime \: number \: and \: b \: is \: not \: equal \: to \: zero} \\  - 3 \sqrt{5}  =  \frac{a}{b}  - 2 \\  - 3 \sqrt{5}  =  \frac{a \:  - 2b}{b}  \\  \sqrt{5}  = \frac{a \:  - 2b}{ - 3b} \:  \\ since \: a \: and \: b \: are \: coprime \: integer \: and \: b \: is \: not \: equal \: to \: zero \\ so \: \frac{a \:  - 2b}{ - 3b} \: is \: a \: rational \: number  \\  \: hence \:  \sqrt{5} \:  is \: also \: rational \\ but \: the \: contradiction \: arise \: that \:  \sqrt{5}  \: is \: a \: irrational \: number \\ our \: assumption \: was \: wrong \\ 2 - therefore \: 2 - 3 \sqrt{5} \:  is \: a \: irrational \: number

❤️❤️HOPE IT HELPS❤️❤️

❤️❤️MARK ME AS BRAINLIST❤️❤️

FOLLOW ME GUYZZ

Answered by vishi222
0

Step-by-step explanation:

see the attachment ...

Pls mark as brainliest....

Attachments:
Similar questions