Prove that
2 sec²Θ - sec⁴Θ - 2 cosec²Θ + cosec⁴Θ = cot⁴Θ - tan⁴Θ
Answers
SOLUTION :
Given :
2sec²θ–sec⁴θ–2cosec²θ+cosec⁴θ = cot⁴θ–tan⁴θ
L.H.S = 2sec²θ–sec⁴θ–2cosec²θ+cosec⁴θ
= (cosec⁴θ - 2cosec²θ) - ( sec⁴θ - 2sec²θ)
= (cosec⁴θ - 2cosec²θ + 1) - (sec⁴θ - 2sec²θ +1)
= ((cosec²θ)² - 2cosec²θ + 1²) - (( sec²θ )² - 2sec²θ + 1²)
=( cosec²θ - 1)² - (sec²θ -1)²
[ a² + b² - 2ab = (a - b)²]
= (cot²θ)² - (tan²θ)²
[ cosec²θ- 1= cot²θ , sec²θ - 1 = tan²θ]
LHS = cot⁴θ - tan⁴θ = RHS
HOPE THIS ANSWER WILL HELP YOU.
To prove:
⇒ 2sec²θ - sec⁴θ - 2cosec²θ + cosec⁴θ = cot⁴θ - tan⁴θ
From the LHS:
⇒ 2sec²θ - sec⁴θ - 2cosec²θ + cosec⁴θ
→ Take sec²θ outside since it's common to both 2sec²θ - sec⁴θ.
→ Take cosec²θ outside since it's common to both - 2cosec²θ + cosec⁴θ.
⇒ sec²θ[2 - sec²θ] - cosec²θ[2 - cosec²θ]
→ Using sec²θ = 1 + tan²θ and cosec²θ = 1 + cot²θ we get:
⇒ (1 + tan²θ)[2 - (1 + tan²θ)] - (1 + cot²θ)[2 - (1 + cot²θ)]
⇒ (1 + tan²θ)[2 - 1 - tan²θ] - (1 + cot²θ)[2 - 1 - cot²θ]
⇒ (1 + tan²θ)[1 - tan²θ] - (1 + cot²θ)[1 - cot²θ]
Using a² - b² = (a + b)(a - b) we get:
⇒ (1)² - (tan²θ)² - [(1)² - (cot²θ)²]
⇒ 1 - tan⁴θ - [1 - cot⁴θ]
⇒ 1 - tan⁴θ - 1 + cot⁴θ
⇒ - tan⁴θ + cot⁴θ
Rearranging the terms we get:
⇒ cot⁴θ - tan⁴θ
LHS = RHS
Hence Proved.