Math, asked by bijukumarmnj6312, 1 year ago

Prove that 2(sin^6A + cos^6A) - 3(sin^4A+ cos^4A) +1 = 0

Answers

Answered by jashanjatana12274
74
here the answer................
Attachments:

anil6610: hello
Answered by boffeemadrid
75

Answer:


Step-by-step explanation:

The given equation is:

2(sin^{6}A+cos^{6}A)-3(sin^{4}A+cos^{4}A)+1

Using a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})

2(sin^{2}A+cos^{2}A)(sin^{4}A-sin^{2}Acos^{2}B+cos^{2}A)-3(sin^{4}A+cos^{4}A)+1

2(1)(sin^{4}A-sin^{2}Acos^{2}B+cos^{4}A)-3(sin^{4}A+cos^{4}A)+1

2sin^{4}A-2sin^{2}Acos^{2}B+2cos^{4}A-3sin^{4}A-3cos^{4}A+1

-sin^{4}A-2sin^{2}Acos^{2}B-cos^{4}A+1

-(sin^{4}A+2sin^{2}Acos^{2}B+cos^{4}A)+1

-(sin^{2}A+cos^{2}B)^{2}+1

-1+1=0= RHS

Hence proved.

Similar questions