Prove that: 2(sin⁶θ+cos⁶θ) - 3(sin⁴θ+cos⁴θ)+1 = 0
Answers
Answered by
3
GIVEN:
2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1 = 0
LHS = 2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1
=2[(sin²θ)³+(cos²θ)³] - 3sin⁴θ-3cos⁴θ+1
=2(sin²θ+cos²θ)[(sin²θ)²+(cos²θ)²-sin²θcos²θ)] - 3sin⁴θ -3cos⁴θ+1
[a³ + b³ = (a+b) (a²+b² -a-b]
=2(1)[sin⁴θ+cos⁴θ - sin²θ cos²θ] - 3sin⁴θ - 3cos⁴θ +1
[sin²θ+cos²θ=1]
=2sin⁴θ+2cos⁴θ-2sin²θcos²θ -3sin⁴θ - 3cos⁴θ +1
= 2sin⁴θ -3sin⁴θ +2cos⁴θ - 3cos⁴θ - 2sin²θcos²θ +1
= - sin⁴θ - cos⁴θ - 2sin² θcos²θ + 1
=1 - [sin⁴θ+cos⁴θ+2sin²θ(cos²θ)]
=1 - [(sin²θ)²+(cos²θ)²+2sin²θcos²θ]
=1 - (sin²θ+cos²θ)²
[ a² + b² +2ab = (a+b)² ]
=1 - (1)²
LHS = 1-1 =0
LHS = RHS
Hence, proved 2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1=0
HOPE THIS WILL HELP YOU..
2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1 = 0
LHS = 2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1
=2[(sin²θ)³+(cos²θ)³] - 3sin⁴θ-3cos⁴θ+1
=2(sin²θ+cos²θ)[(sin²θ)²+(cos²θ)²-sin²θcos²θ)] - 3sin⁴θ -3cos⁴θ+1
[a³ + b³ = (a+b) (a²+b² -a-b]
=2(1)[sin⁴θ+cos⁴θ - sin²θ cos²θ] - 3sin⁴θ - 3cos⁴θ +1
[sin²θ+cos²θ=1]
=2sin⁴θ+2cos⁴θ-2sin²θcos²θ -3sin⁴θ - 3cos⁴θ +1
= 2sin⁴θ -3sin⁴θ +2cos⁴θ - 3cos⁴θ - 2sin²θcos²θ +1
= - sin⁴θ - cos⁴θ - 2sin² θcos²θ + 1
=1 - [sin⁴θ+cos⁴θ+2sin²θ(cos²θ)]
=1 - [(sin²θ)²+(cos²θ)²+2sin²θcos²θ]
=1 - (sin²θ+cos²θ)²
[ a² + b² +2ab = (a+b)² ]
=1 - (1)²
LHS = 1-1 =0
LHS = RHS
Hence, proved 2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1=0
HOPE THIS WILL HELP YOU..
Answered by
1
Trigonometry,
Let A instead of theta
2(sin^6A+cos^6A)-3(sin^4A+cos^4A)
Have to prove this = 1
Now
LHS = 2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1
=2{(sin^2A)^3+(cos^2A)^3}-3{(sin²A+cos²A)-2sin²A.cos²A}+1
= 2{(sin²A+cos²A)(sin⁴A-sin²A.cos²A+cos⁴A)}-3(1-2sin²A.cos²A)+1
= 2{(sin²A + cos²A)-2sin²A.cos²A -sin²A.cos²A}-3+6sin²A.cos²A+1
= 2(1-3sin²A.cos²A)-3+6sin²A.cos²A+1
= 2-6sin²A.cos²A - 3+6sin²A.cos2A+1
= -1+1
= 0 = RHS [proved]
That's it
Hope it helped (・ิω・ิ)
Let A instead of theta
2(sin^6A+cos^6A)-3(sin^4A+cos^4A)
Have to prove this = 1
Now
LHS = 2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1
=2{(sin^2A)^3+(cos^2A)^3}-3{(sin²A+cos²A)-2sin²A.cos²A}+1
= 2{(sin²A+cos²A)(sin⁴A-sin²A.cos²A+cos⁴A)}-3(1-2sin²A.cos²A)+1
= 2{(sin²A + cos²A)-2sin²A.cos²A -sin²A.cos²A}-3+6sin²A.cos²A+1
= 2(1-3sin²A.cos²A)-3+6sin²A.cos²A+1
= 2-6sin²A.cos²A - 3+6sin²A.cos2A+1
= -1+1
= 0 = RHS [proved]
That's it
Hope it helped (・ิω・ิ)
Similar questions
Social Sciences,
8 months ago
Science,
8 months ago
Math,
8 months ago
Science,
1 year ago
Hindi,
1 year ago