prove that 2(Sin⁶θ+Cos⁶θ)-3(Sin⁴θ+Cos⁴θ)+1 = 0.
Answers
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identity
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2ab
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2abare used in the above step where
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2abare used in the above step wherea = sin2θ and b = cos2θ.
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2abare used in the above step wherea = sin2θ and b = cos2θ.writing sin2θ + cos2θ = 1, we have
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2abare used in the above step wherea = sin2θ and b = cos2θ.writing sin2θ + cos2θ = 1, we have = 2[1-3 sin2θ cos2θ] -3[-2 sin2θcos2θ] + 1
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2abare used in the above step wherea = sin2θ and b = cos2θ.writing sin2θ + cos2θ = 1, we have = 2[1-3 sin2θ cos2θ] -3[-2 sin2θcos2θ] + 1= 2-6 sin2θcos2θ -3 + 6 sin2θcos2θ + 1
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1 =2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2-2sin2θcos2θ]+1The algebraic identitya3 + b3 = (a+b)3 - 3ab(a+b) and a2 + b2 = (a+b)2 - 2abare used in the above step wherea = sin2θ and b = cos2θ.writing sin2θ + cos2θ = 1, we have = 2[1-3 sin2θ cos2θ] -3[-2 sin2θcos2θ] + 1= 2-6 sin2θcos2θ -3 + 6 sin2θcos2θ + 1= -3+3=0
hope it helps you ❤️
2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)
2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}
2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}
2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)
2-6sin²θcos²θ-3+6sin²θcos²θ= -1
hope it helps...