prove that 2cos²π/3 + 3/4sec²π/4 + 4sin²π/6 = cot² π/6
Answers
Step-by-step explanation:
Here,
- cos π/3 = 1/2
- sec π/4 = √2
- sin π/6 = 1/2
- cot π/6 = √3
LHS:-
RHS:-
•°• LHS = RHS
Step-by-step explanation:
Step-by-step explanation:
\sf \underline \red{Answer:-}
Answer:−
Here,
cos π/3 = 1/2
sec π/4 = √2
sin π/6 = 1/2
cot π/6 = √3
LHS:-
\begin{gathered} \sf \longmapsto \: 2 {cos}^{2} \frac{\pi}{3} + \frac{3}{4} {sec}^{2} \frac{\pi}{4} + 4 {sin}^{2} \frac{\pi}{6} \\ \end{gathered}
⟼2cos
2
3
π
+
4
3
sec
2
4
π
+4sin
2
6
π
\begin{gathered}\sf \longmapsto \:2 {( \frac{1}{2} })^{2} + \frac{3}{4} {( \sqrt{2} })^{2} + 4 {( \frac{1}{2} )}^{2} \\ \end{gathered}
⟼2(
2
1
)
2
+
4
3
(
2
)
2
+4(
2
1
)
2
\begin{gathered}\sf \longmapsto \: \frac{1}{2} + \frac{3}{2} + 1 \\ \end{gathered}
⟼
2
1
+
2
3
+1
\sf \longmapsto \:3⟼3
RHS:-
\sf \longmapsto \: {cot}^{2} \frac{\pi}{6}⟼cot
2
6
π
\sf \longmapsto \: {( \sqrt{3} })^{2}⟼(
3
)
2
\sf \longmapsto \:3⟼3
•°• LHS = RHS