Math, asked by shubhamamrit, 1 year ago

PROVE THAT :

2log15/18 - log25/162 + log4/9 = log2

Answers

Answered by AlexaJones
1

Hey!!

Solution→Refer to the attachment...

Attachments:
Answered by Anonymous
25

SOLUTION:-

L.H.S

2log( \frac{15}{18} ) - log( \frac{25}{162} ) + log( \frac{4}{9} ) \\  \\  =  > 2log( \frac{5}{6} ) - log25 + log162  + log4  - log9 \\  \\  =  > 2log5 - 2log6 - log {5}^{2}  + log(2 \times  {3}^{4} ) + log {2}^{2}  - log  {3}^{2}  \\  \\  =  > 2log5 - 2log(2 \times 3) - 2log5 + log2 + 4log3 + 2log2 - 2log3 \\  \\  =  > 2log5 - 2log2 - 2log 3 - 2log5 + log2 + 4log3  + 2log2 - 2log3 \\  \\  =  > 2log5 - 2log5 + 4log3 - 4log3 + ( - 2log2 + 2log2 + log2) \\  \\  =  > log \: 2

R.H.S

Hope it helps ☺️

Similar questions