Math, asked by unique1man, 9 months ago

prove that 2sin7A*cosA=sin9A+sin5A

Answers

Answered by rosey25
2

Answer:

tan 5A

Explanation:

Here, the given equation is

\dfrac{sin A + sin 5A + sin 9 A}{cos A + cos 5A + cos 9A}

we know the formula of sin C + sin D and sin C + sin D = sin \dfrac{C+D}{2} cos \dfrac{C-D}{2} \\and\\cos C + cos D = cos \dfrac{C+D}{2} cos \dfrac{C-D}{2} \\

apply the formula in the given equation

\dfrac{sin A + sin 5A + sin 9 A}{cos A + cos 5A + cos 9A}[tex]=\dfrac{sin A + sin 9A + sin 5A}{cos A + cos 9A + cos 5A}\\\\=\dfrac{sin\frac{(9A+A)}{2}cos\frac{(9A-A)}{2} + sin5A }{cos\frac{(9A+A)}{2}cos\frac{(9A-A)}{2} + cos5A } \\=\dfrac{sin5A cos 8A+sin 5A}{cos5Acos8A+cos5A} \\=\dfrac{sin5A(cos8A+1)}{cos5A(cos8A+1)} \\=\dfrac{sin5A}{cos5A} \\=tan5A

Hence proved.

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \blacksquare \: FORMULA TO BE IMPLEMENTED

 \displaystyle \: 2 \: sinA \: cos \: B = sin  \: {( A + B ) }   + \: sin  \: {( A  -  B ) }

 \blacksquare \: CALCULATION

2 \: sin7A \: cosA

 \displaystyle \:  \:  = \: sin \:  {(7A   + A) } \:  +  \:  sin \: {(7A  -  A) } \:  \:

 =  sin \:  8A   \:  + sin \:  6A

Similar questions