prove that 2sin7A*cosA=sin9A+sin5A
Answers
Answered by
2
Answer:
tan 5A
Explanation:
Here, the given equation is
\dfrac{sin A + sin 5A + sin 9 A}{cos A + cos 5A + cos 9A}
we know the formula of sin C + sin D and sin C + sin D = sin \dfrac{C+D}{2} cos \dfrac{C-D}{2} \\and\\cos C + cos D = cos \dfrac{C+D}{2} cos \dfrac{C-D}{2} \\
apply the formula in the given equation
\dfrac{sin A + sin 5A + sin 9 A}{cos A + cos 5A + cos 9A}[tex]=\dfrac{sin A + sin 9A + sin 5A}{cos A + cos 9A + cos 5A}\\\\=\dfrac{sin\frac{(9A+A)}{2}cos\frac{(9A-A)}{2} + sin5A }{cos\frac{(9A+A)}{2}cos\frac{(9A-A)}{2} + cos5A } \\=\dfrac{sin5A cos 8A+sin 5A}{cos5Acos8A+cos5A} \\=\dfrac{sin5A(cos8A+1)}{cos5A(cos8A+1)} \\=\dfrac{sin5A}{cos5A} \\=tan5A
Hence proved.
Answered by
17
FORMULA TO BE IMPLEMENTED
CALCULATION
Similar questions