prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx
Answers
Answered by
12
Answer:
(2sinxcosx-cosx)/(1 -sinx+sin²x-cos²x)=cotx
Step-by-step explanation:
Prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx
LHS
= (2SinxCosx - Cosx)/(1 - Sinx + Sin²x - Cos²x)
= (Cosx(2Sinx - 1)/( 1 - Cos²x + Sin²x - Sinx)
Using 1 - Cos²x = Sin²x
= (Cosx(2Sinx - 1)/( Sin²x + Sin²x - Sinx)
= (Cosx(2Sinx - 1)/(2Sin²x - Sinx)
= (Cosx(2Sinx - 1)/(Sinx(2Sinx - 1)
Cancelling 2Sinx - 1
= Cosx/Sinx
= Cotx
= RHS
QED
Proved
(2sinxcosx-cosx)/(1 -sinx+sin²x-cos²x)=cotx
Answered by
1
Answer:
LHS = (2sinxcosx-cosx)/(1-sinx-cos^2x+sin^2x)
= (2sinxcosx-cosx)/(sin^2x+cos^2x-sinx-cos^2x+sin^2x)
= (2sinxcosx-cosx)/(2sin^2x+cos^2x)
= cosx(2sinx-1)/sinx(2sinx-1)
= cosx/sinx
= cotx
=RHS
Similar questions
History,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Economy,
1 year ago
Political Science,
1 year ago
Art,
1 year ago