Math, asked by Hacker20, 1 year ago

prove that

2tanx-1 = cos^-1 [ 1 - x² / 1 + x² ]

Answers

Answered by abhi178
1

2tan^{-1}x=cos^{-1}\frac{1-x^2}{1+x^2} \\
Let\:cos^{-1}\frac{1-x^2}{1+x^2}=A\\\\then,cosA=\frac{1-x^2}{1+x^2}\\\\so,tan\frac{A}{2}=\sqrt{\frac{1-cosA}{1+cosA}}

hence,tan\frac{A}{2}=\sqrt{\frac{1-\frac{1-x^2}{1+x^2}}{1+\frac{1-x^2}{1+x^2}}} \\  =   \sqrt{ \frac{1 +  {x}^{2} - 1 +  {x}^{2} }{1 +  {x}^{2} + 1  -  {x}^{2}  } }  \\  = x
now,
tan\frac{A}{2}=x\\\\\frac{A}{2}=tan^{-1}x\\\\A=2tan^{-1}x\\\\cos^{-1}\frac{1-x^2}{1+x^2}=2tan^{-1}x
hence proved //
Answered by Anonymous
1
ANSWER IS IN THE IMAGE
Attachments:
Similar questions