Math, asked by singhparmsingh8, 6 months ago

prove that 3 +√15is an irrational number deep​

Answers

Answered by sk181231
2

Answer:

\bf\huge\red{\mid{\overline{\underline{AnswEr}}}\mid}

Let us assume that 3 + √5 is a rational number.

Now,

3 + √5 = (a ÷ b)

[Here a and b are co-prime numbers]

√5 = [(a ÷ b) - 3]

√5 = [(a - 3b) ÷ b]

Here, {(a - 3b) ÷ b} is a rational number.

But we know that √5 is a irrational number.

So, {(a - 3b) ÷ b} is also a irrational number.

So, our assumption is wrong.

3 + √5 is a irrational number.

Hence, proved.

Similar questions