Math, asked by abcwasim66232, 1 month ago

prove that , √3-√2/√3+√2 + √3+√2/√3-√2 = 10​

Answers

Answered by Anonymous
8

To Prove :-

 { \sf { \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = 10 }}

Solution :-

 { \bf Let \:\: LHS \:\: i.e \:\: \sf \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} }

Take LCM ;

 { : \implies \quad { \sf { \dfrac{{(\sqrt{3} - \sqrt{2})²} + {(\sqrt{3} + \sqrt{2})²}}{(\sqrt{3} - \sqrt{2}) ( \sqrt{3} + \sqrt{2} ) } }}}

We knows the following algebraic identities ;

 \quad \qquad { \bigstar { \underline {\boxed { \red { \bf { ( a + b )² = a² + b² + 2ab }}}}}}{\bigstar}

 \quad \qquad { \bigstar { \underline {\boxed { \green { \bf { ( a - b )² = a² + b² - 2ab }}}}}}{\bigstar}

 \quad \qquad { \bigstar { \underline {\boxed { \blue { \bf { a² - b² = ( a + b ) ( a - b ) }}}}}}{\bigstar}

Using these identities we have ;

 { : \implies \quad { \sf ( 29 )² = ( 20 )² + x² }}

 { : \implies { \sf { \dfrac{\{(\sqrt{2})² + (\sqrt{3})² - 2 × \sqrt{3} × \sqrt{2}\} + \{(\sqrt{3})² + (\sqrt{2})² + 2× \sqrt{3} × \sqrt{2}\}}{(\sqrt{3})² - (\sqrt{2})²} }}}

 { : \implies { \sf { \dfrac{2 + 3 - 2\sqrt{6} + 2 + 3 + 2\sqrt{6}}{3 - 2} }}}

 { : \implies { \sf { \dfrac{2 + 3 - \cancel{2\sqrt{6}} + 2 + 3 + \cancel{2\sqrt{6}}}{1} }}}

 { : \implies { \sf { 2 + 2 + 3 + 3 }}}

 { : \implies { \bf { 10 }}}

Hence Proved !

 { \bigstar { \underline { \boxed { \red { \bf { \therefore \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = 10  }}}}}}{\bigstar}

Similar questions